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File Description

This file contains examples of the generalized quan-
tum permanent compromise attack to the Blum-
Micali construction. The examples presented here
illustrate the attack described in the paper published
by Guedes et al. in WECIQ 2010 [3].

To characterize the Blum-Blum-Shub generator,
the following references were used: [8, 10, 5, 1]. In
the case of the Kaliski generator, the references were:
[6, 8, 2, 10]. The reader should consulte them to see
more details about these generators.

1 Blum-Blum-Shub Generator

Let M be the product of two large primes p and q
where p ≡ q ≡ 3 mod 4, i.e., M is a Blum prime.
Define QRM as the quadratic residues modulo M ,
i.e., QRM = (Z∗

M )2.

Let f : ZM → ZM be the Rabin function, with the
following definition

f(x) = x2 modM (1)

The Blum-Blum-Shub generator (BBS) takes
x0 ∈R Z∗

M and iterates the Rabin function in the
following way:

xi = x2i−1 modM (2)

bi = γj(xi) (3)

where γj denotes the hard-core predicate for the one-
way permutation. This hard-core predicate returns
the j-th bit from the given parameter, where j is
previously fixed and 1 < j < n. The value of M
and j are publicly know and the security of the BBS
generator relies on the hypothesis of the hardness of
factoring [5, 8, 10].

Suppose that a cryptosystem uses the BBS to pro-
duce pseudorandom quantities. This generator was
initialized with the parameters (M = 3·7 = 21, j = 5)
that are publicly known1.

Suppose that an adversary of this cryptosystem
wants to attack the BBS generator. In this scenario,
suppose that the adversary (i) discovered that the
following sequence of bits b = 10 was outputted by
the generator; and, (ii) possess a quantum computer
able to execute the generalized quantum permanent
compromise attack to the Blum-Micali construction.

In the next sections, the activities to perform the
attack successfully will be described.

1Considering j = 5 represents that the least significant bit
will be returned by the hard-core predicate.
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1.1 Attack Setup

The attack setup comprehend all the steps necessary
to prepare the quantum algorithm to run. Firstly,the
adversary needs to prepare the quantum gates that
will be used in the attack.

The number of qubits to represent the domain in a
quantum computer is ⌈logD⌉ = 5. Since 2 bits where
discovered by the adversary, 2 qubits will compose
the second register. In this way, the summarization
of necessary qubits is: 5 qubits to first register, 2
qubits to the second register, and 1 qubit as ancillary
to the amplitude amplification procedure.

The ρ gate implements the permutation overQRM ,
that performs the following transformations:

|x ∈ QRM ⟩ →
∣∣x2 modM

⟩
(4)

|x ̸∈ QRM ⟩ → |x⟩ (5)

To facilitate the notation, let lsb(x) be the function
that, given an integer x, returns the least significant
bit of x.

The δbi gates, where bi represents the associated
bit produced, have the following definition:

δbi |x⟩ |y⟩ =
{

|x⟩ |y⟩ if lsb(x) = bi and x ∈ QRM
|x⟩ |y⟩ otherwise

In summary, it can be said that the gate δbi inverts
the target qubit, when the value of the control qubit
would have produced the associated bit bi according
to the hard-core predicate lsb.

The last step of the attack setup is to determine
how many Grover’s iterations will be necessary. In
this case, it is expected just a single solution over
N = ⌈logM⌉ = 5 bits of input, i.e., 32 numbers. So,
the number of iterations k is given by:

k =

⌊
π

4

√
32

1

⌉
= 4 (6)

Arranging the gates as suggested by the algorithm,
the resulting circuit is denoted in the Figure 1.
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Figure 1: Quantum circuit that implements the
attack against the BBS generator.

1.2 Attack Example

Since the requirements for the attack are prepared,
the generalized quantum permanent compromise
attack is ready to be executed.

The first step is to prepare the four input registers,
as shown in |ψ0⟩ below:

|ψ0⟩ = |00000⟩ |00⟩ |1⟩ (7)

A superposition of the input is made to represent
all the domain of the generator. The last qubit is
also put in superposition because it will be used in
the amplitude amplification phase:

|ψ1⟩ =
1√
32

(
31∑
i=0

|i⟩

)
|00⟩ |−⟩ (8)

Emphasizing the domain QRM , the state |ψ1⟩ can
be rewritten as:
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|ψ′
1⟩ =

1√
32

(
31∑
i=0

|i⟩

)
|00⟩ |−⟩ (9)

=
1√
32

(|1⟩+ |4⟩+ |7⟩+ |9⟩+ |15⟩ +

+ |16⟩+ |18⟩) |00⟩ |−⟩+

+
1√
32

31∑
i=0,i̸∈QRM

|i⟩ |00⟩ |−⟩ (10)

With the first observed bit b1 = 1, the δ1 gate will
be applied, resulting:

|ψ2⟩ = γ1 |ψ1⟩ (11)

=
1√
32

(|1⟩+ |7⟩+ |9⟩+ |15⟩) |10⟩ |−⟩+

+
1√
32

(|4⟩+ |16⟩+ |18⟩) |00⟩ |−⟩+

+
1√
32

31∑
i=0,i ̸∈QRM

|i⟩ |00⟩ |−⟩ (12)

Up to this point, the algorithm identify X̂1 =
{1, 7, 9, 15} as the potential candidates to the repre-
sentative. It is important to notice that this identifi-
cation is just in the quantum level.

The Rabin function, implemented by the ρ gate,
must be applied to the input:

|ψ3⟩ = ρ |ψ2⟩ (13)

=
1√
32

(|1⟩+ |7⟩+ |18⟩+ |15⟩) |10⟩ |−⟩+

+
1√
32

(|4⟩+ |16⟩+ |9⟩) |00⟩ |−⟩+

+
1√
32

31∑
i=0,i̸∈QRM

|i⟩ |00⟩ |−⟩ (14)

The second bit will be used to determine X̂2:

|ψ4⟩ = γ0 |ψ3⟩ (15)

=
1√
32

|18⟩ |11⟩ |−⟩+

+
1√
32

(|1⟩+ |7⟩+ |15⟩) |10⟩ |−⟩+

+
1√
32

(|4⟩+ |16⟩) |01⟩ |−⟩+ |9⟩ |00⟩ |−⟩+

+
1√
32

31∑
i=0,i̸∈QRM

|i⟩ |00⟩ |−⟩ (16)

It is important to notice that X̂2 = {9} and the
solution is already identified in a quantum level. The
next step is to simply obtain x3:

|ψ5⟩ = ρ |ψ4⟩ (17)

=
1√
32

|9⟩ |11⟩ |−⟩+

+
1√
32

(|1⟩+ |7⟩+ |15⟩) |10⟩ |−⟩+

+
1√
32

(|16⟩+ |4⟩) |01⟩ |−⟩+ |18⟩ |00⟩ |−⟩

+ +
1√
32

31∑
i=0,i ̸∈QRM

|i⟩ |00⟩ |−⟩ (18)

The state |ψ5⟩ can be written as a partition, where
z ̸= 11:

|ψ′
5⟩ =

1√
32

|9⟩ |11⟩ |−⟩+
31∑

i=0,i̸=9

|i⟩ |z⟩ |−⟩(19)

=
1√
32

|ψxi⟩+
√

31

32
|ψ¬xi⟩ (20)

It should be noticed that |ψxi⟩ = |9⟩ |11⟩ |−⟩ and

|ψ¬xi⟩ =
∑31
i=0,i ̸=9 |i⟩ |z⟩ |−⟩.

Considering the geometric representation of this
state, then:

|ψ′
5⟩ = sin θ |ψxi⟩+ cos(θ) |ψ¬xi⟩ (21)
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where sin2 θ = 1
32 and θ ∈

(
0, π2

)
, therefore θ =

0.17771 radians.

The next step is to perform k = 4 Grover itera-
tions, resulting:

|ψ6⟩ = G⊗4 |ψ5⟩ (22)

= sin[(2 · k + 1)θ]
∣∣ψgood

⟩
+

+ cos[(2 · k + 1)θ] |ψbad⟩ (23)

= sin[9 · 0.17771]
∣∣ψgood

⟩
+

+ cos[9 · 0.17771] |ψbad⟩ (24)

= sin(1.599)
∣∣ψgood

⟩
+ cos(1.599) |ψbad⟩ (25)

A measurement in the second register will return
9 with probability of |sin(1.599)|2 ∼= 0.9996. It
means that with just two qubits, the representative of
the BBS generator was correctly retrieved with high
probability.

This concludes an example of the generalized quan-
tum permanent compromise attack against the secu-
rity of the BBS generator.

2 Kaliski Generator

The Kaliski generator is based on the elliptic curve
discrete logarithm problem. Let p be a prime, p ≡
2 mod 3, and consider a curve E(Fp) that consists of
points (x, y) ∈ Fp × Fp such that:

y2 = x3 + c (26)

The points of E(Fp) together with a point at infinity
O form a cyclic additive group of order p + 1. Let
Q be a generator this group and let ϕ be a function
with the following definition:

ϕ(P ) =

{
y if P = (x, y)
p if P = O

The Kaliski generator’s one-way permutation and
hard-core predicate are given below:

f(P ) = ϕ(P )Q (27)

bi = λ(P ) (28)

where the function λ has the following definition:

λ(P ) =

{
1 if ϕ(P ) ≥ p+1

2
0 otherwise

The domain of the Kaliski generator is D = E(Fp)
and the seed P1 is a random point on the curve.

Suppose that a cryptosystem uses the Kaliski gen-
erator to produce pseudorandom quantities. This
generator was initialized with the parameters p = 5
and c = 1. Suppose also that an adversary of this
cryptosystem wants to attack a Kaliski generator.

In this scenario, suppose that the adversary (i) dis-
covered that the following sequence of bits b = 10
was outputted by the generator; and, (ii) possess a
quantum computer able to execute the generalized
quantum permanent compromise attack to the Blum-
Micali construction.

In the next section, details about the Kaliski gen-
erator under attack will be presented to the reader
in order to clarify the comprehension about the steps
of the attack. After that, the attack setup will be
described, reporting all the gates and number of iter-
ations required by the attack. To conclude the attack,
the steps of the quantum algorithm will be detailed.

3 Details of Initialization of
the Kaliski Generator Under
Attack

In the example of the Kaliski generator used in this
file, the initialization adopted the parameters p = 5
and c = 1, resulting in the following equation of the
curve:

y2 = x3 + 1 mod 5 (29)

The set of points that satisfy this equation is
{(4, 0), (0, 1), (0, 4), (2, 2), (2, 3)}. This set together
with a point at infinity, denoted by O, characterizes
the cyclic group of order p+1, i.e., the domain of the
permutation.

The generator of this group is Q = (2, 2) and is
important to remark that:
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Q = (2, 2) (30)

2Q = Q+Q = (0, 4) (31)

3Q = 2Q+Q = (4, 0) (32)

4Q = 3Q+Q = (0, 1) (33)

5Q = 4Q+Q = (2, 3) (34)

6Q = 5Q+Q = O (35)

It is important to notice that kQ, where k is an in-
teger, does not represent the ordinary multiplication
operation. It represents the addition of a point to
itself in the context of an elliptic curve. More details
about this operation should be seen in the book of
Paar and Pelzl (Section 9.1.2 – Group Operations on
Elliptic Curves) [7] and also in the book of Stallings
(Section 6.5 – Elliptic Curves Over Finite Fields) [9].
The generator of the example has the form:

Pi = ϕ(Pi−1)Q (36)

b(Pi) = λ(P ) (37)

where the function ϕ has the following definition:

ϕ(P ) =

{
y if P = (x, y)
p if P = O

The function λ has the following definition:

λ(P ) =

{
1 if ϕ(P ) ≥ 3
0 otherwise

For this example, the resulting permutation can be
represented as the functional graph illustrated in the
Figure 2.

Figure 2: Functional graph for the one-way permu-
tation of the Kaliski generator used in the example.

3.1 Attack Setup

The attack setup comprehend all the steps necessary
to prepare the quantum algorithm to run. Firstly is
is necessary to determine how many qubits are nec-
essary as input.
The number of qubits to represent the domain in

a quantum computer is ⌈logD⌉ = ⌈log 6⌉ = 3. Since
2 bits where discovered by the adversary, 2 qubits
will be necessary in the third register. In this way,
the summarization of necessary qubits is: 3 qubits
to first register, 2 qubits to the second register, and
1 qubit as ancillary to the amplitude amplification
procedure.
Since the points cannot be directly represented in a

quantum computer, the following representation will
be used:

(4, 0) ≡ |1⟩ (38)

(0, 1) ≡ |2⟩ (39)

(0, 4) ≡ |3⟩ (40)

(2, 2) ≡ |4⟩ (41)

(2, 3) ≡ |5⟩ (42)

O ≡ |6⟩ (43)

The next step is to to prepare the quantum gates
that will be used in the attack. The ρ gate, responsi-
ble to implement the permutation, performs the fol-
lowing transformations:

|0⟩ → |0⟩ (44)

|1⟩ → |6⟩ (45)

|2⟩ → |4⟩ (46)

|3⟩ → |2⟩ (47)

|4⟩ → |3⟩ (48)

|5⟩ → |1⟩ (49)

|6⟩ → |5⟩ (50)

|7⟩ → |7⟩ (51)

It should be noticed that the gate ρ is unitary, since
ρ · ρ† = I, where I denotes the identity matrix.
The gate λ0 performs the following transforma-

tions:
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|0⟩ |c⟩ → |0⟩ |c⟩ (52)

|1⟩ |c⟩ → |1⟩ |c⟩ (53)

|2⟩ |c⟩ → |2⟩ |c⟩ (54)

|3⟩ |c⟩ → |3⟩ |c⟩ (55)

|4⟩ |c⟩ → |4⟩ |c⟩ (56)

|5⟩ |c⟩ → |5⟩ |c⟩ (57)

|6⟩ |c⟩ → |6⟩ |c⟩ (58)

|7⟩ |c⟩ → |7⟩ |c⟩ (59)

(60)

In the case of the Kaliski generator, the matrix re-
presentation of the gates is shown in the Appendix A.
The reader can verify that they are unitary by per-
forming a multiplication of each gate to it transpose
conjugated.
The number of iterations required by the Grover’s

algorithm is given by:

k =

⌊
π

4

√
8

1

⌉
= 2 (61)

Arranging the gates as suggested by the algorithm,
the resulting circuit is denoted in the Figure 3.

|0⟩

H
λ0

ρ

λ0

ρ

G G

>=
|0⟩ >=
|0⟩ >=
|0⟩

|0⟩

{ |1⟩ H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩ |ψ5⟩ |ψ6⟩

Figure 3: Quantum circuit that implements the
attack against the Kaliski generator.

3.2 Attack Example

The first step describes the initialization of the circuit
according to each register as shown in the |ψ0⟩:

|ψ0⟩ = |000⟩ |00⟩ |1⟩ (62)

It is applied to the first and third registers the
Hadamard gate, responsible to put the input in an
equally distributed superposition. The result of the
application of such gate is shown in the |ψ1⟩:

|ψ1⟩ = H⊗3 ⊗ I⊗2 ⊗H |ψ0⟩ (63)

= H⊗3 |000⟩ |00⟩H |1⟩ (64)

=
1√
8

8∑
i=0

|i⟩ |00⟩ |−⟩ (65)

=
1√
8
(|0⟩+ |1⟩+ . . . |7⟩) |00⟩ |−⟩ (66)

At this point, all the states have the same proba-
bility to be measured. The next step is to perform
the first phase of the quantum permanent compro-
mise algorithm, responsible for the identification of
the representative. The λ0 gate associate in the third
register all the elements of the first one that would
have produced the bit 0 in the hard-core predicate.
The result is shown in the |ψ2⟩ below:

|ψ2⟩ = λ0 |ψ1⟩ (67)

=
1
√
8
(|1⟩+ |2⟩+ |4⟩) |10⟩ |−⟩+

+
1
√
8
(|0⟩+ |3⟩+ |5⟩+ |6⟩+ |7⟩) |00⟩ |−⟩ (68)

It is important to notice that up to this
point the the candidates to the representative are:
{|1⟩ , |2⟩ , |4⟩}. Since the algorithm reproduces the
steps of the Kaliski generator, it is necessary to per-
form the permutation in all the elements of the do-
main. This operation is performed by the ρ gate, as
shown in the state |ψ3⟩.

|ψ3⟩ = ρ |ψ2⟩ (69)

=
1
√
8
(|6⟩+ |4⟩+ |3⟩) |10⟩ |−⟩+

+
1
√
8
(|0⟩+ |2⟩+ |1⟩+ |5⟩+ |7⟩) |00⟩ |−⟩ (70)

The next step is to apply again the gate λ0, that
will identify the elements that would have produced
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the second bit. The effect of this gate is reported in
the |ψ4⟩.

|ψ4⟩ = λ0 |ψ3⟩ (71)

=
1
√
8
|4⟩ |11⟩ |−⟩+

1
√
8
(|2⟩+ |1⟩) |01⟩ |−⟩+

+
1
√
8
(|6⟩+ |3⟩) |10⟩ |−⟩+

+
1
√
8
(|0⟩+ |5⟩+ |7⟩) |00⟩ |−⟩ (72)

The next step is to perform the application of the
gate ρ one more time. It is necessary to identify the
representant of the internal state X(3).

|ψ5⟩ = ρ |ψ4⟩ (73)

=
1
√
8
|3⟩ |11⟩ |−⟩+

1
√
8
(|4⟩+ |6⟩) |01⟩ |−⟩

+
1
√
8
(|5⟩+ |4⟩) |10⟩ |−⟩+

+
1
√
8
(|0⟩+ |1⟩+ |7⟩) |00⟩ |−⟩ (74)

After that, it is important to notice that the repre-
sentative of the internal state X(3) is already iden-
tified: |3⟩. However, a measurement in the second
register at this point would return any number from
|0⟩ to |7⟩ with the same probability. The next step of
the algorithm comprehend the amplitude amplifica-
tion of the element identified as solution. To proceed
is necessary to consider the following representation
of the state |ψ5⟩:

∣∣ψ′
5

⟩
=

1
√
8
|3⟩ |11⟩ |−⟩+

1
√
8

7∑
j=0,j ̸=3

|j⟩ |z ̸= 11⟩ (75)

=
1
√
8
|ψxi ⟩+

√
7

8
|ψ¬xi ⟩ (76)

It should be noticed that there’s a partition in
two subspaces:|ψxi

⟩ = |3⟩ |11⟩ |−⟩ and |ψ¬xi⟩ =∑7
j=0,j ̸=3 |j⟩ |z ̸= 11⟩ |−⟩.
Considering the geometric representation of this

state, then:

|ψ′
5⟩ = sin θ |ψxi⟩+ cos(θ) |ψ¬xi⟩ (77)

where sin2 θ = 1
8 and θ ∈

(
0, π2

)
, therefore θ = 0.361

radians.

The next step of the algorithm is to perform k = 2
Grover’s iterations in the state |ψ′

5⟩, resulting:

|ψ6⟩ = G⊗2
∣∣ψ′

5

⟩
(78)

= sin[(2 · k + 1)θ] |ψxi ⟩+
+ cos[(2 · k + 1)θ] |ψ¬xi ⟩ (79)

= sin[5 · 0.361]
∣∣ψgood

⟩
+

+ cos[5 · 0.361] |ψbad⟩ (80)

= sin(1.805)
∣∣ψgood

⟩
+ cos(1.805) |ψbad⟩ (81)

At this point, a measurement in the second reg-
ister would return the state |3⟩ with probability of

|sin(1.805)|2 = 0.946. With this information the in-
truder will be able to retrieve all the set X(i) of in-
ternal states from the generator under attack, endan-
gering its unpredictability.

This concludes an example of the generalized quan-
tum permanent compromise attack against the secu-
rity of the Kaliski generator.

4 Final Remarks

The examples illustrated in this file show how to en-
danger the security of the generators BBS and Kaliski
from the Blum-Micali Construction. This endan-
gering is made by a quantum permanent compromise
attack and the consequence is that an adversary is
capable to reproduce all the previous and future out-
puts of the generator.

The quantum attack is based on Amplitude Ampli-
fication, a generalization of Grover’s quantum search.
This attack provides a quadratic speedup over the
classical analogous algorithm. For more details about
the quantum attack, the reader is reported to the pa-
pers of Guedes et al. [4, 3].
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A Matrix Representation of
the Gates

ρ =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1



λ0 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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